3.7.16 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [616]

Optimal. Leaf size=212 \[ \frac {2 \left (a^2 A+2 A b^2-3 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 (2 A b-3 a B) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a d} \]

[Out]

2/3*(A*a^2+2*A*b^2-3*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/
2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a^2/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*A*sin(d*x
+c)*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a/d-2/3*(2*A*b-3*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2
*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^2/d/((b+a*
cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.41, antiderivative size = 212, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3034, 4119, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} \frac {2 \left (a^2 A-3 a b B+2 A b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 (2 A b-3 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}{3 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*(a^2*A + 2*A*b^2 - 3*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*a^
2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(2*A*b - 3*a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2
, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (2*A*Sqrt[Cos[c + d*
x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*a*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4119

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*n)), x]
+ Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + A*a*(n +
1)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b
- a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a d}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} (2 A b-3 a B)-\frac {1}{2} a A \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a}\\ &=\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a d}-\frac {\left ((2 A b-3 a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^2}+\frac {\left (2 \left (\frac {a^2 A}{2}+\frac {1}{2} b (2 A b-3 a B)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2}\\ &=\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a d}+\frac {\left (2 \left (\frac {a^2 A}{2}+\frac {1}{2} b (2 A b-3 a B)\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((2 A b-3 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^2 \sqrt {b+a \cos (c+d x)}}\\ &=\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a d}+\frac {\left (2 \left (\frac {a^2 A}{2}+\frac {1}{2} b (2 A b-3 a B)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((2 A b-3 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=\frac {2 \left (a^2 A+2 A b^2-3 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 (2 A b-3 a B) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 5.20, size = 311, normalized size = 1.47 \begin {gather*} \frac {2 \left (a A (b+a \cos (c+d x)) \sin (c+d x)-\frac {\left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (-i (a+b) (-2 A b+3 a B) E\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+i a (-2 A b+a (A+3 B)) F\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(2 A b-3 a B) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sec ^{\frac {3}{2}}(c+d x)}\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*(a*A*(b + a*Cos[c + d*x])*Sin[c + d*x] - ((Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*((-I)*(a + b)*(-2*A*b + 3
*a*B)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*S
ec[(c + d*x)/2]^2)/(a + b)] + I*a*(-2*A*b + a*(A + 3*B))*EllipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a +
b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (2*A*b - 3*a*B)*(b + a*Cos[c
+ d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*x)/2]))/Sec[c + d*x]^(3/2)))/(3*a^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a
+ b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1079\) vs. \(2(248)=496\).
time = 20.46, size = 1080, normalized size = 5.09

method result size
default \(\text {Expression too large to display}\) \(1080\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*cos(d*x+c)^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(1+cos(d*x+c))*(A*cos(d*x+c)^3*((a-
b)/(a+b))^(1/2)*a^2*(1/(1+cos(d*x+c)))^(1/2)-A*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2)+3
*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*(1/(1+cos(d*x+c)))^(1/2)-A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*(1/(1+co
s(d*x+c)))^(1/2)+2*A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2)-2*A*cos(d*x+c)*((a-b)/(a+b))^
(1/2)*b^2*(1/(1+cos(d*x+c)))^(1/2)-2*A*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+
cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b+2*A*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^2+A*sin(d
*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*a^2+2*A*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b-3*B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*(1/(1+cos(d*
x+c)))^(1/2)+3*B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^(1/2)+3*B*sin(d*x+c)*((b+a*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2
-3*B*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*sin(d*x+c)*a*b-3*B*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))
*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a^2-A*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c
)))^(1/2)+2*A*((a-b)/(a+b))^(1/2)*b^2*(1/(1+cos(d*x+c)))^(1/2)-3*B*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c)))^
(1/2))/a^2/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/(1/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.78, size = 452, normalized size = 2.13 \begin {gather*} \frac {6 \, A a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A a^{2} + 6 i \, B a b - 4 i \, A b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (3 i \, A a^{2} - 6 i \, B a b + 4 i \, A b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-3 i \, B a^{2} + 2 i \, A a b\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, B a^{2} - 2 i \, A a b\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{9 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/9*(6*A*a^2*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + sqrt(2)*(-3*I*A*a^2 + 6
*I*B*a*b - 4*I*A*b^2)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3
*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(3*I*A*a^2 - 6*I*B*a*b + 4*I*A*b^2)*sqrt(a)*weierstra
ssPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) +
2*b)/a) - 3*sqrt(2)*(-3*I*B*a^2 + 2*I*A*a*b)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b -
 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) +
 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*sqrt(2)*(3*I*B*a^2 - 2*I*A*a*b)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2
)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1
/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/(a^3*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3435 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________